Common Needle, Shoot, Branch and Stem Diseases of Conifer Trees in Bhutan

Thomas Kirisitsa* – Edwin Donaubauer a – Heino Konrad a,b – Sangay Dorji a – Irene Barnes c – Wolfgang Maierc – Michael J. Wingfield c – Norbu Gyeltshend – D. B. Chhetri d

a Institute of Forest Entomology, Forest Pathology and Forest Protection, Department of Forest and Soil Sciences, University of Natural Resources and Applied Life Sciences, Vienna, Austria.

b Federal Research and Training Centre for Forests, Natural Hazards and Landscape, Department of Forest Genetics, Vienna, Austria

c Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa

d Renewable Natural Resources Research Centre, Jakar, East Central Region, Council for RNR Research of Bhutan, Ministry of Agriculture, Royal Government of Bhutan, Bhutan

Extended abstract – Bhutan is a small, landlocked, densely forested country in the South-Eastern Himalayas (FAO 1999, 2001). Forests are of immense importance for the ecology, economy and social well-being of this country and for the livelihood of its people. In mountainous areas at elevations between about 2100 and 4200 m asl., temperate conifer forests form the natural vegetation in this part of the Himalayas. These forests occupy about 24% of the total area of Bhutan and they consist mainly of Eastern Himalayan fir (Abies densa), Eastern Himalayan spruce (Picea spinulosa), Himalayan hemlock (Tsuga dumosa) and Himalayan Blue pine (Pinus wallichiana) (Grierson – Long 1983, Rosset 1999). Other conifers and various broadleaved tree species (Rhododendron spp., Betula spp., Populus spp., Acer spp., Sorbus spp. and Salix spp.) are often admixed to the aforementioned major conifer species or sometimes dominate forest stands on specific sites (Grierson – Long 1983, Rosset 1999). Another important conifer in Bhutan is Chir pine (Pinus roxburghii), which occurs mainly in sub-tropical and warm temperate forests (Grierson – Long 1983). This pine does, however, not form part of cold temperate conifer forests.

In the 1980's conifer forests in Bhutan were affected by two serious, large-scale forest health problems, namely decline of fir (Abies densa) (Donaubauer 1986, 1987, 1993, Ciesla – Donaubauer 1994) and outbreaks of the bark beetles Ips schmutzenhoferi on P. spinulosa and P. wallichiana and Ips longifolia on P. roxburghii (Schmutzenhofer 1987a, 1987b, 1988, Holzschuh 1988, Tshering – Chhetri 2000, Kirisits et al. 2002). Fir decline and bark beetle outbreaks have for the first time shown that diseases, insect pests and abiotic damaging factors can pose a great threat to the forests of this Himalayan country and can greatly upset the aims of forest management and conservation. These two forest health problems were also the starting point for research in forest entomology, forest pathology and forest protection in Bhutan and mark the begin of the collaboration between Bhutan and Austria in these fields. Following research and training activities in the 1980's, collaboration in forest pathology and

* Corresponding author: thomas.kirisits@boku.ac.at; Hasenauerstrasse 38, A-1190 Vienna, Austria.
forest protection between Austria and Bhutan has been continuing since 2001 as part of the Conifer Research and Training Partnership (CORET, http://woek.boku.ac.at/coret/) between the University of Natural Resources and Applied Life Sciences, Vienna (BOKU), Austria and Renewable Natural Resources (RNR) Forest Research of Bhutan, in which scientists from the Forestry and Agricultural Biotechnology Institute (FABI) of the University of Pretoria, South Africa also participate.

The most important pathogen of *Pinus wallichiana* is Himalayan dwarf mistletoe (*Arceuthobium minutissimum*) (Hawksworth – Wiens 1996). This minute parasitic plant is widespread and very damaging in dry Blue pine forests in Western Bhutan (districts Paro, Ha and Thimphu) (Donaubauer 1986, Chhetri 1990, 1995, Tshering – Chhetri 2000, Kirisits et al. 2002, Dorji 2007). *Taxillus kaempferi*, a leafy mistletoe, also commonly infects Blue pine in Western and Central Bhutan (Donaubauer 1986, Chhetri 1990, Kirisits et al. 2002, Dorji 2007). This mistletoe also occurs on *Tsuga dumosa* and *Picea spinulosa* (Grierson – Long 1983, Donaubauer 1986). Blister rust on branches and stems of Blue pine, caused by *Cronartium ribicola* or a related species occurs occasionally on young trees (Donaubauer 1987, Chhetri 1990, Kirisits et al. 2002). Needle diseases of *P. wallichiana* include Dothistroma needle blight caused by *Dothistroma septosporum* (Barnes et al. in press), needle rust caused by a *Coleosporium* sp. (Donaubauer 1987), needle cast caused by a *Rhizosphaera* sp. and infestation by sooty moulds. Hysterothecia of *Lophodermium* spp. are common on Blue pine needles (Kirisits et al. 2002), but the species have not yet been determined. *Lophodermium* spp. may be endophytes or saprophytes becoming apparent on needles affected by other needle pathogens. There are also records of a needle cast caused by *cf. Meloderma desmazierii* on *P. wallichiana* (Donaubauer 1986, Chhetri 1990). Needle rust, caused by a *Coleosporium* sp. (Chhetri 1990) and *Lophodermium* spp. have also been documented on *P. roxburghii*.

Picea spinulosa is affected by Sichuan dwarf mistletoe (*Arceuthobium sichuanense*), which has been recorded only from the districts Ha and Paro in Western Bhutan (Donaubauer 1987, Hawksworth – Wiens 1996, Thering – Chhetri 2000, Dorji 2007). This dwarf mistletoe is much less prevalent than *A. minutissimum* on Blue pine and has thus-far not caused economic damage (Donaubauer 1987, Dorji 2007). Sirococcus shoot blight, caused by the P type of *Sirococcus conigenus* was found for the first time on *P. spinulosa* in 2001 and this record also represented the first report of the disease and the associated pathogen from anywhere in Asia (Kirisits et al. 2002, 2007, Konrad 2006). At higher elevations, current-year spruce shoots frequently suffer from infection by a rust fungus resembling *Chrysomyxa woroninii*, which causes hypertrophy, intense yellowing and finally death of shoots (Donaubauer 1987, Kirisits et al. 2002). A second *Chrysomyxa* sp. causes needle rust, with symptoms and signs resembling those of needle rust diseases of other spruce species in the Northern hemisphere (Kirisits et al. 2002).

The most important forest health problem of *Abies densa* is a syndrome known as fir decline (Donaubauer 1986, 1987, 1993, Ciešla – Donaubauer 1994). In the 1980's numerous stands over an extensive area in Western Bhutan were affected and at many sites a large
portion, if not virtually all trees were killed. This dramatic fir decline was explained as a complex / decline disease (Ciesla – Donaubauer 1994), with prolonged drought and probably also frost as the main inciting factors and various biotic agents (stem and root rot fungi) as predisposing and/or contributing factors (Donaubauer 1986, 1987, 1993, Cielsa – Donaubauer 1994). Little is known about needle, shoot, branch and stem diseases of Abies densa. Needle blight caused by a fungus resembling Lirula nervisequia was prevalent in the 1980’s (Donaubauer 1987). Trees of all age classes and especially also old trees were affected by this needle blight. Needle rust, caused by an undetermined rust fungus was observed once during the disease survey in 2001 (Kirisits et al. 2002).

Few, if any diseases have thus-far been documented on other temperate conifer trees in Bhutan. A needle cast caused by Rhizosphaera sp. occurs on Tsuga dumosa (Donaubauer 1987), and anecdotal reports suggest the occurrence of juniper rust (caused by Gymnosporangium sp.) on Black juniper (Juniperus pseudosabina) and Weeping blue juniper (Juniperus recurva). The latter is supported by the occurrence of Gymnosporangium spermogonia and aecia on wild apple (Malus sp.) trees. No diseases have been recorded on Eastern Himalayan larch (Larix griffithiana), Sargant spruce (Picea brachytyla), Bhutan pine (Pinus bhutanica) and Yew (Taxus baccata).

Results of the disease surveys since the 1980's form the basis for future surveys and studies on diseases of conifer trees in Bhutan. Our ultimate goal will be to publish a guide to important and/or common diseases affecting conifers in this Himalayan country. This guide would be a useful tool in facilitating the diagnosis, prevention and management of tree disease problems. It would also be helpful for the training of students and forestry staff in Bhutan to increase their knowledge and understanding in forest pathology. As the main objective of CORET is the education of Bhutanese scholars, researchers and practitioners and thus human capacity building in various disciplines of forest science, this guide would also immensely contribute to the success of this partnership program between Austria and Bhutan.

Acknowledgements: We thank the Conifer Research and Training Partnership (CORET, http://woek.boku.ac.at/coret/), funded by the Austrian Development Co-operation (Austrian Ministry of Foreign Affairs) and the Royal Government of Bhutan for the opportunity and partial funding to undertake research and training activities in forest pathology in Bhutan.

REFERENCES

